
(open)ad-joint issues

Jean Utke1

1University of Chicago and Argonne National Laboratory

July 17, 2009

July 17, 2009
Utke :”(open)ad-joint issues”, 1

Why adjoints by source transformation?

operator overloading

simple tool implementation as a
library
adjoints: generate & reinterpret an
execution trace → inefficient
efficiency gains come from:

runtime AD optimization
optimized library
inlining

requires manual type change

source transformation

complicated implementation of tools
especially for adjoints
full front end, back end, analysis
efficiency gains from

compile time AD optimizations
source code (esp. activity) analysis
explicit control flow reversal

Adjoints for computationally complex applications require source
transformation!

July 17, 2009
Utke :”(open)ad-joint issues”, 2

Why is this a user concern?

Adjoint efficiency depends on AD transformation algorithms and exploiting
higher level model properties (sparsity, iterative solvers, self adjointness,...)

BUT source transformation efficiency depends also on

capability for structured control flow reversal
code analysis accuracy
partitioning the execution for checkpointing

the above are affected by

use of programming language features

using such features in certain inherently difficult to handle patterns

programming style

July 17, 2009
Utke :”(open)ad-joint issues”, 3

therefore
knowing some AD tool “internal” algorithms is of interest to the user
(e.g. compare to compiler vectorization or interval arithmetic)

only very simple models with low computational complexity
→ can get away with “something”

fully automatic solutions exist for narrowly defined setups (e.g. NEOS)

When dealing with any unsupported language feature / programming pattern :

Does it have a supported alternative and is the alternative more efficient (and
better maintainable in the model source)?

Is the adjoint of such an alternative more efficient than the adjoint of the
unsupported construct?

What is the effort of changing the model vs. the effort of implementing a
potentially complicated or rarely used or inherently inefficient adjoint
transformation?

OpenAD mode of operation: implement language features on demand so that we can
maximize the time available to improve the generally applicable AD algorithms!

July 17, 2009
Utke :”(open)ad-joint issues”, 4

Structured vs. Unstructured Control Flow
think - GOTO, alternative ENTRY, early RETURN,

structured control flow is characterizable by some control flow graph
properties; permits structured reverse control flow!

simple view: use only loops and branches and no other control flow
constructs (some things are easily fixable though, e.g. turn STOPs into some error routine call ,...)

example: early return from within a loop (CFG left, adjoint CFG right)

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

Entry(10)

B(9)''

pB

Branch(8)

B(4)''

 T

pLc

 F

Loop(7)

B(6)''

 T

EndBranch(3)

F

EndLoop(5)B(2)''

Exit(1)

Entry

all is fine without the red arrow

by inspection: adjoint needs alternative ENTRY
(or GOTO); but difficult to automate in general

need to trace more control flow path details

unstructured control flow is bad for compiler
optimization, already for the original model!

possible generic but inefficient fallback: trace
enumerated basic blocks, replay inverse trace
with GOTO <blockId> (no branches/loops left, more

memory needed for trace)

July 17, 2009
Utke :”(open)ad-joint issues”, 5

Non-deterministic control flow
= control flow may change between two model executions on identical model inputs
because of a multiuser system environment
examples:

branching based on availability of system resources (that may be used by
others), disk space, memory, system load

communication in parallel execution for instance with mutexes, semaphores,
(justified) use of MPI TEST (test for completion of one exchg. 1 to early start exhg. 2, adjoint needs to switch test

to exchg.2)

ISEND

RECV

RECV

WAIT

fixed loop count

True

F
al

se B1
ISEND

B2

ISEND

RECV

RECV

WAIT

fixed loop count

True

F
al

se B1
ISEND

B2

TEST||done TEST||done

WAIT

SEND

SEND

IRECV

B2

TEST||done

T
ru

e

IRECV

B1
ISEND

WAIT

SEND

SEND

IRECV

B2

TEST||done

T
ru

e

IRECV

B1
ISEND

False False

July 17, 2009
Utke :”(open)ad-joint issues”, 6

Non-deterministic control flow II

hard to automatically detect the context to which a tested condition
applies but the transformation requires the context information to
correctly generate & place the adjoint test condition

non-deterministic communication with MPI wildcards can be made
deterministic (at the expense of lower efficiency) by recording the actual
wild card values and using them in the adjoint sweep.

google “adjoinable MPI”

July 17, 2009
Utke :”(open)ad-joint issues”, 7

Checkpointing and non-contiguous data

checkpointing = saving program data (to disk)

“contiguous” data: scalars, arrays (even with stride > 1), strings,
structures,...

“non-contiguous” data: linked lists, rings, structures with pointers,...

checkpointing is very similar to “serialization”

Problem: decide when to follow a pointer and save what we point to
A

A

A

A

A

A

B

C
DD

E

(big)

unless we have extra info this is not decidable at source transformation
time

possible fallback: runtime bookkeeping of things that have been saved (is
computationally expensive)

July 17, 2009
Utke :”(open)ad-joint issues”, 8

Semantically Ambiguous Data

e.g. EQUIVALENCE (or its C counterpart union)
data dependence analysis: dependencies propagate from one variable to all
equivalenced variables
“activity” (i.e. the need to generate adjoint code for a variable) leaks to all
equivalenced variables whether appropriate or not
certain technical problems with the use of an active type (as in OpenAD)

work-arrays (multiple,0 semantically different fields are put into a (large)
work-array); access via index offsets

data dependence analysis: there is array section analysis but in practice it
is often not good enough to reflect the implied semantics
the entire work-array may become active / checkpointed

programming patterns where the analysis has no good way to track the
data dependencies:

data transfer via files (don’t really want to assume all read data depends on
all written data)
non-structured interfaces: exchanging data that is identified by a “string” as
done for instance in the ESMF interfaces (if you feel bad about Fortran think of void* in C.)

July 17, 2009
Utke :”(open)ad-joint issues”, 9

Recomputation from Checkpoints and Program Resources

think of memory, file handles, sockets, MPI communicators,...

problem when resource allocation and
deallocation happen in different partitions
(see hierarchical checkpointing scheme in
the figure on the left)
current AD checkpointing does not track
resources
dynamic memory is “easy” as long as
nothing is deallocated before the adjoint
sweep is complete.

July 17, 2009
Utke :”(open)ad-joint issues”, 10

options to handle local deallocations

1 subroutine foo(p,t)
2 integer, intent(inout), pointer, dimension(:) :: p
3 integer, target :: t(:)
4 t=2∗p ! need adjoint pointer to point to (invisible) t1
5 p=>t ! pointer is overwritten
6 end subroutine
7
8 subroutine bar
9 interface

10 subroutine foo(p,t)
11 integer, intent(inout), pointer, dimension(:) :: p
12 integer, target :: t(:)
13 end subroutine
14 end interface
15 integer, target, allocatable :: t1(:), t2(:)
16 integer, pointer, dimension(:) :: p
17 allocate(t1(1)); allocate(t2(1))
18 t1(1)=1
19 p=>t1
20 call foo(p,t2)
21 print∗, p(1) ! p points now to t2
22 end subroutine ! t1 and t2 are deallocated
23
24 program p
25 call bar()
26 end program

modify model to reuse/grow allocated memory
(rather than repeatedly allocate/deallocate), e.g.
turn t1 t2 into global vars,...

potential solution for allocate/deallocate within
a checkpointing partition without pointers:
track allocated memory to turn deallocates (here
implicit on exit line 22) into allocates (of the
appropriate size)

potential (complicated) solution when pointers
are involved: associate dynamic allocations in
forward sweep to dynamic allocations in the
adjoint sweep (adjoint needs to restore pointer
overwritten on line 5, but stored pointer value
references deallocated memory; need abstract
association between forward allocate on line 17
and adjoint allocate corresponding to implicit
deallocate on line 22)

July 17, 2009
Utke :”(open)ad-joint issues”, 11

quick OpenAD overview

www.mcs.anl.gov/OpenAD
forward and reverse
source transformation
modular design
aims at large problems
language independent
transformation
researching combinatorial problems
current Fortran front-end Open64
(Open64/SL branch at Rice U)
migration to Rose (already used for
C/C++ with EDG)
uses association by address
(i.e. has an active type)

Rapsodia for higher-order
derivatives via type change
transformation

Open

Analysis

whirl

SageTo

XAIF

xerces

boost

Angel

Sage3
EDG/front − ends

XAIF

(AD source transformation)

xaifBooster

FortTk

Open

Open64

AD/

Fortran pipeline:

whirl2xaif xaif2whirl

F’

whirlF’

xaifxaifF

Fwhirl

F

xaifBooster

F’

OpenAnalysis

Open64

July 17, 2009
Utke :”(open)ad-joint issues”, 12

www.mcs.anl.gov/OpenAD

summary

for OpenAD (and other AD tools) there is no “simple” characterization of
what works and what doesn’t

currently being extended in the OpenAD implementation are:

complex/array arithmetic

various Fortran syntax elements

improved taping algorithm

If something doesn’t work as expected - talk to us to find out if there is a quick
fix or what it takes to make it work.

July 17, 2009
Utke :”(open)ad-joint issues”, 13

	motivation
	Why is this a user concern
	Control Flow
	Checkpointing and Data
	Releasing Program Resources
	OpenAD
	summary

